Sundial 日時計

- 小野寺 康幸
- e電子工房
 - http://einstlab.web.fc2.com

日時計とは

- ・ 古代から使われてきた時計(起源は不明)
- ・影を利用した時計
- 原理は影が北を指したとき正午

• 方位磁石や北極星で方位を確定 太陽 6:00 緯度 18:00 35度 12:00 北 Copyright 2011-2016 Y.Onodera

電波時計やGPS時計の時刻は正確?

- 平均3年に一度、うるう秒を追加している。
- ・実は3年に1秒ずれ、不正確。
- 本来、時計の時刻が正確なら、補正する必要はない。
- 1秒の定義(時間)と1日の長さ(時刻)に誤差があるため。(一日あたり約1.4ミリ秒の誤差がある。)

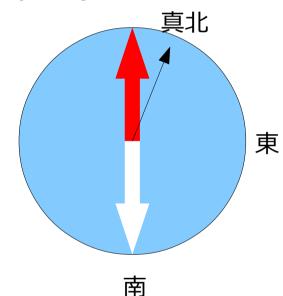
うるう秒実施	6月30日	12月31日												
1972年	+1秒	+1秒	1980年	0	0	1990年	0	+1秒	2000年	0	0	2010年	0	,
1973年	C	+1秒	1981年	+1秒	0	1991年	0	0	2001年	0	0	2011年	0	,
1974年	C	+1秒	1982年	+1秒	0	1992年	+1秒	0	2002年	0	0	2012年	+1秒	;
1975年	C	+1秒	1983年	+1秒	0	1993年	+1秒	0	2003年	0	0	2013年	0	,
1976年	C	+1秒	1984年	0	0	1994年	+1秒	0	2004年	0	0	2014年	0	,
1977年	C	+1秒	1985年	+1秒	0	1995年	0	+1秒	2005年	0	+1秒	}		
1978年	C	+1秒	1986年	0	0	1996年	0	0	2006年	0	0			
1979年	C	+1秒	1987年	0	+1秒	1997年	+1秒	0	2007年	0	0			
			1988年	0	0	1998年	0	+1秒	2008年	0	+1秒	•		
			1080年	0		1000年	0	0	2000年	Λ	0			

原点回帰

- 時刻とは何か?
 - 地球の公転周期と自転周期によって決まる自然現象。
 - 基準はあくまでも自然現象。自然現象を正とする。
 - 潮の満ち引きなどにより自転周期(時刻)はゆらいでいる。
 - セシウム原子時計側を自然現象に合わせている。
 - うるう秒
 - 地球に大きな隕石が衝突すると自転周期が変わる。
- 時刻はアナログ
 - 電波時計やGPS時計もある時代に原点回帰
 - 日時計で時刻とは何かを知ろう。
 - 太陽と地球の動きを3次元でイメージしよう。

メリットとデメリット

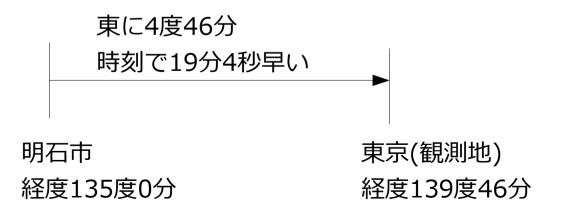
- ・メリット
 - 原理が簡単
 - 太陽の方向と南北がわかれば時刻を知ることができる。
- デメリット
 - 天気が悪い(曇り、雨、雪)と計測できない
 - 夜間は計測できない(ただし北極星から北を確認できる)。
 - 補正をしないと精度が悪い。
 - さまざまな補正が必要。


補正

- 1.方位磁石(地磁気)と真北はずれている。
- 2.日本標準時と観測地の経度ずれがある。
- 3.地球の公転楕円運動と地軸傾斜による補正が必要。

- 面倒なのでマイコンを使って自動補正。
- 補正をすれば理論上は1分程度の誤差

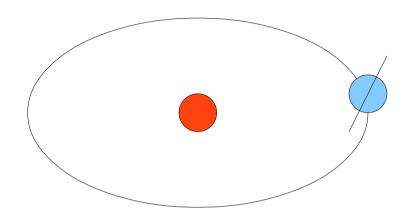
(1)地磁気のずれ=磁気偏角


- 地磁気の北と地図上の北にはずれがある。
- ・これを磁気偏角という。(国土地理院)
- 緯度、経度から補正する。
- 地磁気は年々変化している。
- ・ 東京の場合、7度西に偏差している。
- 本当の北は東側。
- ちなみにZ軸方向(伏角)にも49度10分の偏差がある。
- 北極星は自転上の北であるからずれはない。
 - (厳密には自転は歳差運動しており示す北極星が変わる。),

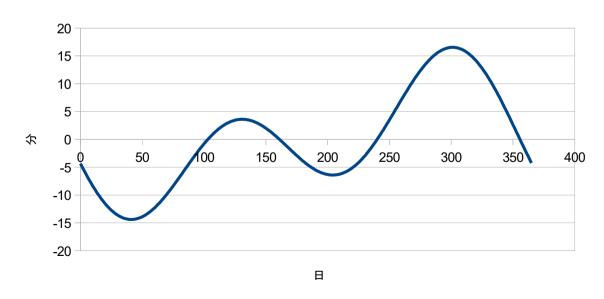
西

(2)日本標準時と観測地のずれ

- 兵庫県明石市、緯度34度39分、経度135度0分
- 東京、経度139度46分
- 東京は経度差4度46分=時刻差19分4秒進んでいる。

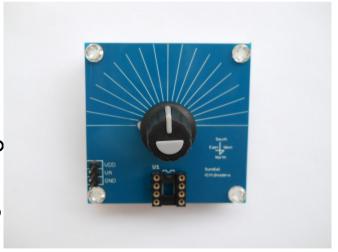


(3)均時差


- 地球の公転はやや楕円運動しており、季節によって公 転速度が異なる(ケプラーの法則)。
- そのため、太陽による時刻は季節によって進んだり遅れたりする。
- さらに地球の自転は23度27度傾いており、この影響もある。
- 一年の平均太陽日と真太陽日との差を均時差といい、1月1日を基準として、これらを補正する。
- ・均時差は近似式がある。

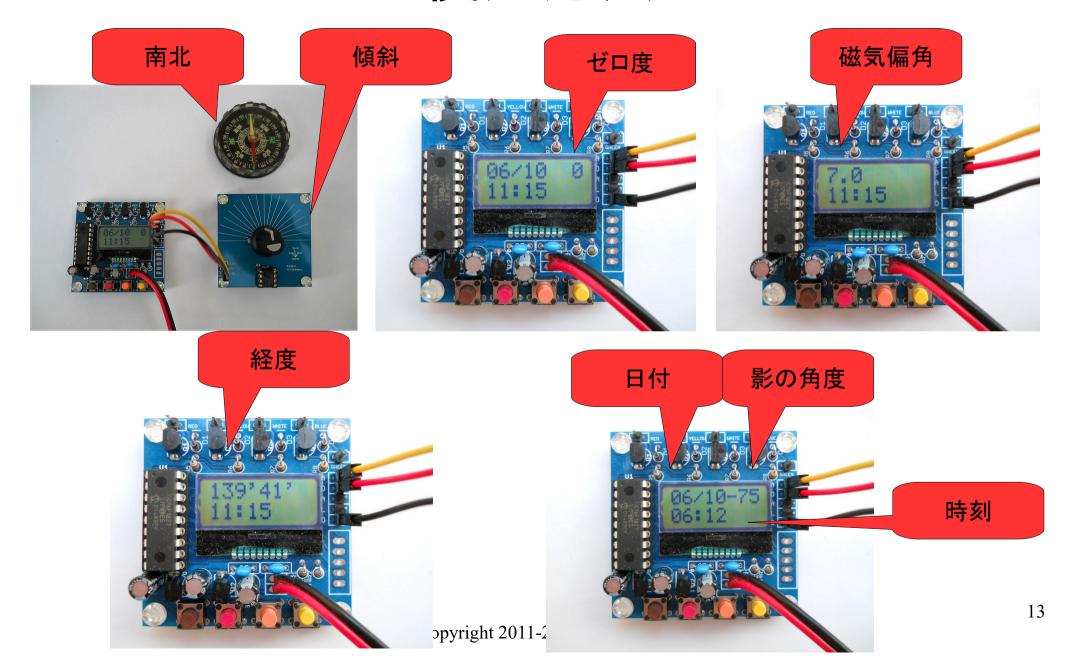
(3)均時差

• 均時差(公転と自転の影響)



均時差

角度センサ=可変ボリューム


- ・影の角度を知る必要がある。
- 可変ボリュームを角度センサとして使う。
- 直線特性のBカーブを使う。
- 可動範囲は300度。
- 中点電圧がわかれば角度がわかる。
- AD変換値がわかれば角度がわかる。
- ・ 北を0度として、影の角度を測定する。

使用方法

- 1.角度センサの面を緯度に傾ける(観測地)。
- 2.方位磁石で南北を確認し0度を合わせる(ゼロ点調整)
- 3.磁気偏角を設定する(観測地)。
- 4.経度を設定する(観測地)。
- 5.日付を設定する(1月1日から12月31日)。
- 6. 影の角度にボリュームを合わせると時刻を表示。

使用方法

観測地点情報(国土地理院)

- 緯度経度
- 磁気偏角

	緯度		経度							
	度	分	秒	度	分	秒	経度差[度]	分換算	磁気偏角[度]	分換算
明石	34	38	35	135	0	0	0	0	7.1	28.4
釧路	42	59	5	144	22	54	9.37	37.47	8.1	32.4
旭川	43	46	15	142	21	54	7.35	29.4	9.5	38
札幌	43	3	43	141	21	16	6.35	25.4	9.2	36.8
函館	41	46	7	140	43	45	5.72	22.87	8.5	34
青森	40	49	20	140	44	51	5.73	22.93	8.2	32.8
盛岡	39	42	7	141	9	15	6.15	24.6	8	32
秋田	39	43	11	140	6	9	5.1	20.4	8.2	32.8
仙台	38	16	5	140	52	11	5.87	23.47	8.1	32.4
新潟	37	54	58	139	2	11	4.03	16.13	8.1	32.4
宇都宮	36	33	19	139	52	58	4.87	19.47	7.2	28.8
長野	36	38	55	138	11	40	3.18	12.73	7.2	28.8
東京	35	41	22	139	41	30	4.68	18.73	7	28
金沢	36	33	39	136	39	24	1.65	6.6	7.4	29.6
名古屋	35	10	54	136	54	23	1.9	7.6	7.1	28.4
京都	35	0	42	135	46	6	0.77	3.07	7.2	28.8
大阪	34	41	38	135	30	8	0.5	2	7	28
松江	35	28	5	133	2	55	-1.97	-7.87	7.4	29.6
広島	34	23	7	132	27	19	-2.55	-10.2	7.1	28.4
松山	33	50	21	132	45	56	-2.25	-9	6.5	26
福岡	33	35	24	130	24	6	-4.6	-18.4	7	28
鹿児島	31	35	49	130	33	26	-4.45	-17.8	6.2	24.8
那覇	26	12	45	127	40	45	-7.33	-29.33	4.4	17.6